Lil Pun, Here are some hints to solve the problems. Hope they are helpful. goodluck! A. Given tan a = 24/7, a in Quadrant I and sin B = -8/17, B in Quadrant III. Find sin(a + B) HINT: sin(a + B) = sin a Cos B + cos a sin B (Expanding function Sin (a+B)) Given tan a = 24 / 7 in Quadrant I IN Quadrant I if tan a = x/y , then sin a = x/(X^2+y^2) , cos a = y/(X^2+y^2) use the above formula to find out values of sin a & cos a sin B = -8/17 in Quadrant III in Quadrant III , if sin B = -x/(X^2+y^2), then cos B = -y/(X^2+y^2) since the value of sin B is given, find the value of 'y' cos B = -y/(X^2+y^2) use the values of cos a, sin a , cos B, sin B in the following formula sin a Cos B + cos a sin B to get the value of sin (a+B) ********************************************* B. Given cos a = 8/17, a in Quadrant IV and sin B = -24/25, B in Quadrant III. Find tan(a + B) HINT: tan(a+b) = (tan a + tan b )/(1 - tan a * tan b)(Expanding function tan (a+B)) GIVEN: cos a = 8 / 17 in Quadrant IV IN Quadrant IV if cos a = x/(X^2+y^2), then sin a = -y/(X^2+y^2) and tan a = -y/x since the value of cos a is given find out value of y, then you will have value of tan a sin B = -24/25 in Quadrant III in Quadrant III , if sin B = -x/(X^2+y^2), then tan B = (-x/-y) since the value of sin B is given, find the value of 'y' then you will have the value of tan B = (-x/-y) use the values of tan a , tan B in the following formula (tan a + tan b )/(1 - tan a * tan b) to get the value of tan (a+B) ********************************************* Write as a product of two funcitons: A. cos 2a + cos 5a B. sin 2B - sin 6B (USE THE following FORMULA ) cos a + cos b = 2 cos((a+b)/2) cos((a-b)/2) sin a - sin b = 2 cos((a+b)/2) sin((a-b)/2)