Look my statistics for the last 12 games, I didn't count the first 10 games because I think Yao did not have much impact for the first 10 games. I did a statistic test using fisher exact probability method . I got the probabilty=0.03. That means if I say if Yao's shoot times is more than 1/3 of both Francis and Mobley's shoot times the Rockets will lost the game, the probability i am right is 3%. Pls give Yao more shots, at least 1/3 of Francis and Mobley!!! Is there any statistican in the rockets game? Does they look the data as i prsented below? <table border="1" width="88%"> <tr> <td width="27%">Francis and Mobley shoot times</td> <td width="18%">Yao shoot times</td> <td width="22%">Yao's Proportion</td> <td width="33%">Result</td> <td width="33%">Team</td> </tr> <tr> <td width="27%">17+18</td> <td width="18%">9</td> <td width="22%"><1/3</td> <td width="33%">Lost</td> <td width="33%">LAC</td> </tr> <tr> <td width="27%">23+21</td> <td width="18%">13</td> <td width="22%"><1/3</td> <td width="33%">Lost</td> <td width="33%">MEM</td> </tr> <tr> <td width="27%">17+15</td> <td width="18%">14</td> <td width="22%">>1/3</td> <td width="33%">Win</td> <td width="33%">Kings</td> </tr> <tr> <td width="27%">17+13</td> <td width="18%">11</td> <td width="22%">>1/3</td> <td width="33%">Win</td> <td width="33%">PHI</td> </tr> <tr> <td width="27%">28+0</td> <td width="18%">19</td> <td width="22%">>1/3</td> <td width="33%">Lost</td> <td width="33%">Hornet</td> </tr> <tr> <td width="27%">12+0</td> <td width="18%">18</td> <td width="22%">>1/3</td> <td width="33%">Win</td> <td width="33%">SAS</td> </tr> <tr> <td width="27%">17+0</td> <td width="18%">3</td> <td width="22%"><1/3</td> <td width="33%">Lost</td> <td width="33%">SAC</td> </tr> <tr> <td width="27%">21+0</td> <td width="18%">7</td> <td width="22%">=1/3</td> <td width="33%">Win</td> <td width="33%">Blazers</td> </tr> <tr> <td width="27%">18+4</td> <td width="18%">4</td> <td width="22%"><1/3</td> <td width="33%">Lost</td> <td width="33%">GSW</td> </tr> <tr> <td width="27%">22+0</td> <td width="18%">4</td> <td width="22%"><1/3</td> <td width="33%">Lost</td> <td width="33%">LAC</td> </tr> <tr> <td width="27%">16+0</td> <td width="18%">11</td> <td width="22%">>1/3</td> <td width="33%">Win</td> <td width="33%">Wizards</td> </tr> <tr> <td width="27%">20+18</td> <td width="18%">12</td> <td width="22%">>1/3</td> <td width="33%">Los</td> <td width="33%">Mavericks</td> </tr> </table> <table border="1" width="100%"> <tr> <td width="33%">¡¡</td> <td width="33%">Win</td> <td width="34%">Lost</td> </tr> <tr> <td width="33%">>=1/3</td> <td width="33%">4</td> <td width="34%">2</td> </tr> <tr> <td width="33%"><1/3</td> <td width="33%">0</td> <td width="34%">6</td> </tr> </table> <p>P=0.03</p> <p>Fisher Exact Probability Method</p>
One big flaw in your chart would be that Mobley missed 6 of the games! Just replot your chart, with KT replacing Mobley when he is not playing. You will convince yourself even more...